Abstract

The 6–18 GHz rotational spectrum of 3-fluorophenylacetylene (3FPA) was measured by chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy. Rotational constants and quartic centrifugal distortion constants based on a Watson-A reduction were determined with 89 transitions; A = 3383.73821 (33) MHz, B = 1180.97617 (16) MHz, C = 875.26172 (12) MHz, ΔJ = 0.0382 (13) kHz, ΔK = 1.316 (21) kHz, δJ = 13.93 (56) Hz, and δK = 180.3 (60) Hz. An additional 12-13 transitions for each of eight 13C isotopic species and Stark effects to determine dipole moment components were observed by Balle-Flygare FTMW spectroscopy. Gas phase molecular structures of 3FPA were derived via the least-square fitting (r0) and substitution (rs) methods using the moments of inertia of the isotopic species. The ring geometry is discussed and compared with previous studies of structures of monosubstituted benzene and crystalline solid structures of 3FPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.