Abstract

The microwave spectra of the normal and the 2-13C isotopic species of 1-cyanobicyclo[1.1.0]butane have been observed and assigned, leading to the following rotational constants: (normal), A=8807.202 ± 0.004, B=2924.334 ± 0.002, C=2509.322 ± 0.002 and (isotope), A=8608.85 ± 0.85, B=2902.88 ± 0.02, and C=2478.56 ± 0.02 MHz. Measurements of the second-order Stark effect led toμT=4.08 ± 0.01 D. Based on the available microwave data coupled with geometryoptimizedab initio molecular orbital structures for cyanocyclopropane and 1-cyanobicyclo[1.1.0]-butane, a molecular structure for the latter molecule is proposed. Analysis of the dipole moments of these molecules and of bicyclo[1.1.0]butane has led to the conclusion that the bicyclobutyl group is a better electron donor than is cyclopropyl. In addition, a simple frontier molecular orbital model is not sufficient for explaining all of the structural changes that occur on substituting cyano at the bridgehead of bicyclo[1.1.0]butane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call