Abstract

A machine learning‐based microwave spectrum detection method based on the nitrogen vacancy (NV) color centers in diamonds is proposed. The functional relationship between the fluorescence spectrum and standard microwave spectrum is established. The response matrix is calculated using the Tikhonov regularization technique, and an unknown microwave spectrum is reconstructed. Diamond particles with a size of only 5 × 5 μm2 are placed in the microfluidic structures. Consequently, the frequency detection range of the microwave spectrum is from 2.892 to 6.214 GHz with a resolution of 22 kHz. The proposed research opens new paths for microwave spectrum detection and imaging at the microscopic scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call