Abstract

The structure of the gas-phase bimolecular complex formed between vinyl chloride and acetylene is determined using a combination of broad-band, chirped-pulse, and narrow-band, Balle-Flygare Fourier transform microwave spectroscopy from 5.8 to 20.7 GHz. Although all previous examples of complexes formed between protic acids and haloethylenes are observed to have similar modes of binding regardless of the specific identity of the acid, HF, HCl, or HCCH, the vinyl chloride-HCCH complex has HCCH located at one end of the vinyl chloride with the secondary interaction occurring with the geminal hydrogen atom as opposed to the "top" binding configuration found for vinyl chloride-HF. Nevertheless, the details of the structure, such as hydrogen bond length (3.01 Å) and amount of deviation from linearity (58.5°), do reflect the strength of the interaction and show clear correlations with the gas-phase acidity. Comparison with analogous complexes allows the determination of the relative importance of electrostatic interactions and steric requirements in leading to the observed structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.