Abstract

(Chloromethyl)phosphine, (ClCH(2)PH(2)) has been studied by microwave spectroscopy at -30 °C in the 22-80 GHz spectral interval. The experimental study has been augmented by quantum chemical calculations at the MP2/aug-cc-pVQZ and B3LYP/aug-cc-pVTZ levels of theory. The spectra of the ground as well as of several vibrationally excited states of the (35)ClCH(2)PH(2) and (37)ClCH(2)PH(2) isotopologues of two rotameric forms, denoted I and II, have been assigned. These conformers have different orientations of the phosphino group. I has a symmetry plane, consisting of the Cl-C-P link of atoms, whereas the phosphino group is rotated out of this symmetry plane in II. Conformer I was found to be 4.3(5) kJ/mol more stable than II by relative intensity measurements. The rotational and quartic centrifugal distortion constants calculated using the MP2/aug-cc-pVQZ procedure are in very good agreement with their experimental counterparts. Less good agreement is found in the B3LYP/aug-cc-pVTZ calculations. Both computational procedures predict energy differences between I and II that are close to the experimental energy difference. It is suggested that I is the preferred form of this molecule because it is stabilized by weak intramolecular hydrogen bonding between the chlorine atom and the hydrogen atoms of the phosphino group. Repulsion between the lone electron pair of the phosphorus atom and the chlorine atom also stabilizes I relative to II.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.