Abstract
2-Chloroethylisocyanide (ClCH(2)CH(2)N≡C) has been synthesized, and its microwave spectrum has been investigated in the 20-97 GHz spectral region. The spectra of (35)Cl and (37)Cl isotopologues of two conformers have been assigned. The Cl-C-C-N chain of atoms is antiperiplanar in one of these rotamers and synclinal in the second. The energy difference between the two forms has been obtained from relative intensity measurements. It was found that the antiperiplanar conformer is favored over the synclinal form by 4.3(8) kJ/mol. Quantum chemical calculations at the CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory have been performed. Most, but not all, of the spectroscopic constants predicted in these calculations are in good agreement with their experimental counterparts. The theoretical calculations correctly predict that the 2-chloroethylisocyanide exists as a mixture of an antiperiplanar and a synclinal conformer, with the former about 3.5 kJ/mol more stable than the latter. Both methods of calculations find that the antiperiplanar rotamer has a symmetry plane. The dihedral angle formed by the Cl-C-C-N link of atoms of the synclinal form is 67° according to the CCSD calculations. It is estimated from a comparison with the experimental rotational constants that this dihedral angle is uncertain by ±3°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.