Abstract

Spectra of the open shell complexes O(2)-HF and O(2)-DF were recorded using Fourier transform microwave spectroscopy. A complete analysis of the hyperfine structure and a global fit including microwave and infrared frequencies [W. M. Fawzy, C. M. Lovejoy, D. J. Nesbitt, and J. T. Hougen, J. Chem. Phys. 117, 693 (2002)] are reported. The Fermi contact interaction between the electron and nuclear spins, the electron spin-nuclear spin dipolar interaction, the nuclear spin-nuclear spin dipolar interaction, and the nuclear electric quadrupole interaction (for O(2)-DF) were considered in the analysis. The correspondence between the magnetic hyperfine constants and the two nuclei of the H(D)F is unambiguously established. In both O(2)-HF and O(2)-DF, the Fermi contact parameter is larger for the fluorine than for the hydrogen, while for the nuclear spin-electron spin dipolar hyperfine constants, the reverse is true. The effective angle between the HF bond and the a axis of the complex, determined from the nuclear spin-nuclear spin interaction constant, is 38(4) degrees. The same angle for the DF complex, derived from the deuterium nuclear quadrupole coupling constant, is 31(4) degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.