Abstract

An apparatus has been constructed to produce metal compounds using laser ablation and to investigate their rotational spectra with a microwave Fourier transform (MWFT) cavity spectrometer. The first three such compounds that have been studied are silver chloride, aluminum (I) chloride, and copper (I) chloride, produced by ablation of silver, aluminum, and copper rods in the presence of chlorine gas, using a Q-switched Nd:YAG laser (532 nm). The high resolution and sensitivity available with the MWFT cavity spectrometer have permitted the first determination of nuclear spin–rotation coupling constants for AlCl and CuCl. These constants have been used to examine the electronic structures of the molecules. Values of the rotational and nuclear quadrupole coupling constants have also been improved for the three metal chlorides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call