Abstract

The microwave spectra for seven unique isotopologues of 4a,8a-azaboranaphthalene [hereafter referred to as BN-naphthalene] were measured using a pulsed-beam Fourier transform microwave spectrometer. Spectra were obtained for the normal isotopologues with (10)B, (11)B, and all unique single (13)C and the (15)N isotopologue (with (11)B), in natural abundance. The rotational, centrifugal distortion and quadrupole coupling constants determined for the (11)B(14)N isotopologue are A = 3042.712 75(43) MHz, B = 1202.706 57(35) MHz, C = 862.220 13(35) MHz, DJ = 0.06(1) kHz, 1.5χaa ((14)N) = 2.5781(61) MHz, 0.25(χbb - χcc) ((14)N) = - 0.1185(17) MHz, 1.5χaa (11B) = - 3.9221(75) MHz, and 0.25(χbb - χcc) ((11)B) = - 0.9069(24) MHz. The experimental inertial defect is Δ = - 0.159 amu Å(2), which is consistent with a planar structure for the molecule. The B-N bond length from the experimentally determined structure is 1.47 Å, which indicates π-bonding character between the B and N. The measured quadrupole coupling strengths provide important and useful information about the bonding, orbital occupancy, and aromatic character for this aromatic molecule. Extended Townes-Dailey analyses were used to determine the B and N electron sp(2)-hybridized and p-orbital occupations. These results are compared with electron orbital occupations from the natural bond orbital option in theoretical calculations. From the analyses, it was determined that BN-naphthalene has aromatic character similar to that of other N-containing aromatics. The results are compared with similar results for B-N bonding in 1,2-dihydro-1,2-azaborine and BN-cyclohexene. Accurate and precise structural parameters were obtained from the microwave measurements on seven isotopologues and from high-level G09 calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.