Abstract

Commercially, 3 mol% Y2O3‐stabilized tetragonal zirconia (70–90 nm) compacts were fabricated using a conventional and a nonconventional sintering technique; microwave heating in a resonant mono‐mode cavity at 2.45 GHz, at temperatures in the 1100–1400°C range. A considerable difference in the densification behavior between conventional (CS) and microwave (MW) sintered materials was observed. The MW materials attain a full density of 99.9% of the theoretical density (t.d.) at 1400°C/10 min, whereas the CS reach only 98.0% t.d. at the same temperature and 1 h of dwelling time. Therefore, the MW materials exhibit superior Vickers hardness values (16.0 GPa) when compared with CS (13.4 GPa).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.