Abstract

AbstractThe theoretical study of microwave characteristics of a thin film of hydrogen plasma in carbon nanotubes, which were grown by iron-catalyzed high-pressure carbon monoxide disproportionation, is presented. The system is assumed to be illuminated by either a transverse magnetic (TM) or a transverse electric (TE) waves at an arbitrary angle of incidence to the film. By considering the interference effects because of multiple reflections between thin plasma layer interfaces, the reflectance, transmittance, and absorptance of microwave radiation at the plasma film are deduced and their functional dependence on the continuous changing of the angle of propagation and plasma thickness with fixed parameters of the system are studied. The simulation results show that for the present system, the interference effects lead to a sinusoidal variation of the reflected intensity and can greatly reduce the amount of reflection power, but the absorption power increases. In addition, it is found that the TE and TM waves have largely indistinguishable microwave absorption and transmission spectrums.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.