Abstract

We develop a theory for the dynamics of an Andreev bound state hosted by a weak link of finite length for which charging effects are important. We derive the linear response of both the current through the link and charge accumulated in it with respect to the phase and gate voltage biases. The resulting matrix encapsulates the spectroscopic properties of a weak link embedded in a microwave resonator. In the low-frequency limit, we obtain the response functions analytically using an effective low-energy Hamiltonian, which we derive. This Hamiltonian minimally accounts for Coulomb interaction and is suitable for a phenomenological description of a weak link having a finite length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.