Abstract

We consider a single-electron transistor in the form of a ferromagnetic dot in contact with normal-metal and pinned ferromagnetic leads. Microwave-driven precession by the dot induces a pumped electric current. In open circuits, this pumping produces a measurable reverse bias voltage, which can be enhanced and made highly nonlinear by Coulomb blockade in the dot. The dependence of this bias on the power and spectrum of microwave irradiation may be utilized to develop nanoscale microwave detectors analogous to single-electron transistor-based electrostatic sensors and nanoelectromechanical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.