Abstract

Measurements of the dc resistivity of surface-state electrons on liquid helium exposed to microwave radiation are reported. It is shown that the resonant microwave excitation of surface-state electrons is accompanied by a strong increase in their resistivity, which is opposite to the result expected from the previously used two-level model. We show that even a very small fraction of electrons excited to the first excited state and decaying back due to vapor-atom scattering strongly heat the electron system, causing a population of higher subbands. The calculated resistivity change is in good agreement with the observed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.