Abstract

We present a novel concept of microwave (MW) power-limiting devices based on reversible semiconductor-to-metal transition (SMT) of vanadium-dioxide thin films integrated on coplanar waveguides. We designed, simulated, and fabricated devices, which can be reversibly driven from a low-loss (<; 0.7 dB) transmission state into an attenuating state (> 20 dB) as the VO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> material is changing from semiconductor to the metal state when the incident MW power exceeds a threshold value. These devices are broadband and present a tunable threshold power value. They could be easily integrated as protection circuits from excess power in a large variety of MW components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.