Abstract

Our paper presents the design, fabrication, and characterization of metamaterial absorber-based microwave imaging detector that is operating in industrial, scientific, and medical (ISM) band. The results reveal that the structure has almost perfect absorption at 2.39 GHz in the simulation and 2.51 GHz in the experimental measurement. For energy-harvesting applications, Schottky diodes have been used and 11.8-mV dc voltage across a Schottky diode has been observed with 84.2% dc conversion efficiency in harvesting application. To show the different incident angle imaging, MATS-1000 antenna training kit is used, and different imaging pictures are given, which are obtained by MATLAB with the help of a microcontroller card. Both experimental and simulation study results verify that the microwave detector generates accurate images with negligible distortions. The innovative side of this study when it is compared with similar studies can be sorted as having more dc obtained voltage, incident angle characterization, and operation frequency. Simulated and measurement results show that the proposed structure can effectively be used in the imaging at ISM frequency band, which is the most common frequency band in wireless appliances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.