Abstract

Electron scattering induces a polarization in the cosmic microwave background (CMB) signal measured in the direction of a galaxy cluster due to the presence of a quadrupole component in the CMB temperature distribution. Measuring the polarization towards distant clusters provides the unique opportunity to observe the evolution of the CMB quadrupole at moderate redshifts, z~0.5-3. We demonstrate that for the local cluster population the polarization degree will depend on the cluster celestial position. There are two extended regions in the sky, which are opposite to each other, where the polarization is maximal, 0.1(tau/0.02) microK in the Rayleigh-Jeans part of the CMB spectrum (tau being the Thomson optical depth across the cluster) exceeding the contribution from the cluster transverse peculiar motion if v_t<1300 km/s. One can hope to detect this small signal by measuring a large number of clusters, thereby effectively removing the systematic contribution from other polarization components produced in clusters. These polarization effects, which are of the order of (v_t/c)^2 tau, (v_t/c) tau^2 and (kT_e/m_ec^2) tau^2, as well as the polarization due to the CMB quadrupole, were previously calculated by Sunyaev and Zel'dovich for the Rayleigh-Jeans region. We fully confirm their earlier results and present exact frequency dependencies for all these effects. The polarization is considerably higher in the Wien region of the CMB spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call