Abstract

In this study, we established a passive direction-finding scheme based on microwave power measurement: Microwave intensity was detected using microwave-frequency proportion integration differentiation control and coherent population oscillation effect converting the change in microwave resonance peak intensity into a shift of the microwave frequency spectrum, for which the minimum microwave intensity resolution was −20 dBm. The direction angle of the microwave source was calculated using the weighted global least squares method of microwave field distribution. This lay in the 12~26 dBm microwave emission intensity range, and the measurement position was in the range of (−15°~15°). The average angle error of the angle measurement was 0.24°, and the maximum angle error was 0.48°. In this study, we established a microwave passive direction-finding scheme based on quantum precision sensing, which measures the microwave frequency, intensity, and angle in a small space and has a simple system structure, small equipment size, and low system power consumption. In this study, we provide a basis for the future application of quantum sensors in microwave direction measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call