Abstract

We have investigated microwave nonreciprocity in a noncentro-symmetric magnet CuB2O4. We simultaneously observed differently originated nonreciprocities; the classical magnetic dipolar effect and the magneto-chiral (MCh) effect. By rotating magnetic field in a tetragonal plane, we clearly unveil qualitative difference between them. The MCh effect signal reveals chiral transitions from one enantiomer to the other via intermediate achiral state. We show magnetoelectric effect plays an essential role for the emergence of microwave MCh effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.