Abstract

ABSTRACTInvestigations on microwave magneto-electric (ME) interactions at 1-10 GHz have been carried out on yttrium iron garnet (YIG)-lead zirconate titanate (PZT) and YIG-lead magnesium niobate lead titanate (PMN-PT) bilayers. Ferromagnetic resonance is a powerful tool for such studies. An electric field E applied to the composite produces a mechanical deformation in PZT or PMN-PT, resulting in a shift in the resonance field for YIG. Information on the nature of high frequency ME coupling has been obtained from data on resonance field shift vs E. A cavity resonator or stripline structure was used. The measured ME interactions are in the range 1-5 Oe cm/kV. The coupling strength has been found to be dependent on magnetic field orientation. The strongest interaction is measured in YIG-PZT systems. The design and characterization of ferromagnetic resonance based, electric field tunable ME resonators and filters are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.