Abstract

We propose and study a kind of bilayered chiral metasurface (BCM) composed of complementary L-shaped resonators with a lossless dielectric spacer that can realize linear polarization rotation with ultrahigh conversion efficiency. We present a theoretical analysis of the BCM with specific chiral geometry that enables asymmetric transmission for linear polarization only. Numerical results show that the proposed metasurface has dual-band asymmetric transmission with nearly 100% cross-polarization conversion efficiency when the loss is ignored. More importantly, depending on the incident direction, only one of the cross-polarization transmissions can approach unity while all the remaining transmissions are close to zero. As a result, nearly perfect linear polarization rotation is achieved for a particular polarization direction. We further show that the working frequency and the bandwidth of the proposed BCM can be tuned by adjusting the geometric size and spatial arrangement of the unit cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.