Abstract

In this studies, synthesis of silver nanoparticles (Ag-NPs) on pullulan-based biofilm was achieved by microwave irradiation technique. Synthesis of Ag-NPs was achieved using pullulan as both a reducing and stabilizing agent. The effect of different microwave irradiation duration on pullulan and silver nitrate in synthesis of silver nanoparticles (Ag-NPs) was investigated. The synthesized Ag-NPs/PL were first screened and identified using surface plasmon peaks of UV–Vis spectroscopy. The research results indicated that the surface plasmon resonance peaks were observed between 400–414 nm wavelengths in UV-VIS spectroscopy studies. From Fourier-transform infrared spectroscopy (FTIR) spectra, stretching vibrations of hydroxyl (OH), carbonyl (C=O) and C=C stretches exhibits the reduction and stabilization of Ag-NPs. Further, five characteristic peaks Ag(111), Ag(200), Ag(210), Ag(220) and Ag(311) confirmed the presence of elemental silver and the crystalline structure of silver nanoparticles from X-ray Diffraction analysis. Biofilms were produced by mixing the synthesized Pulullan-Ag-NPs with polyvinyl alcohol. The AgNP/PL were applied for the antimicrobial activity against Bacillus subtilis and found to have high antibacterial activity. In addition, the clear zones of inhibition was found at 11 mm to 16 mm against Bacillus Subtillis. The experimental results demonstrated that pullulan could be used as reducing and stabilizing agent for formation of Ag-NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call