Abstract

Within a 1-dimensional model we calculate quantum mechanically the probability to ionize a highly excited hydrogen atom by a monochromatic microwave field. Based on a detailed analysis of the ionization process we developed a computational scheme as well as a simple physical framework which are presented and discussed. Our calculations are in good agreement with the experimental results. We show that the experimentally measured ionization thresholds are due to a sharp transition between two localization regimes and that recently measured structures below the classical chaos border are due to unresolved clusters of Floquet pseudo crossings. We propose an experimental method by which one could measure the distance and distribution of crossing Floquet eigenvalues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.