Abstract

A Michelson-type large core optical fiber sensor has been developed, which is designed based on the optical carrier-based microwave interferometry technique, and fabricated by using two pieces of 200-μm diameter fused silica core fiber as two arms of the Michelson interferometer. The interference fringe pattern caused by the optical path difference of the two arms is interrogated in the microwave domain, where the fringe visibility of 40dB has easily been obtained. The strain sensing at both room temperature and high temperatures has been demonstrated by using such a sensor. Experimental results show that this sensor has a linear response to the applied strain, and also has relatively low temperature-strain cross talk. The dopant-free quality of the fused silica fiber provides high possibility for the sensor to have promising strain sensing performance in a high temperature environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call