Abstract

PEGylation is one of the most widely employed strategies to increase the circulatory half-life of proteins and to reduce immune responses. However, conventional PEGylation protocols often require excess reagents and extended reaction times because of their inefficiency. This study demonstrates that a microwave-induced transient heating phenomenon can be exploited to significantly accelerate protein PEGylation and even increase the degree of PEGylation achievable beyond what is possible at room temperature. This can be accomplished under conditions that do not compromise protein integrity. Several PEGylation chemistries and proteins are tested, and mechanistic insight is provided. Under certain conditions, extremely high levels of PEGylation were achieved in a matter of minutes. Moreover, considering the significantly reduced reaction times, the microwave-induced transient heating concept was adapted for continuous flow manufacturing of bioconjugates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.