Abstract

The microwave photoconductivity of the 2D electron gas in GaAs/AlAs heterostructures has been investigated at a temperature of 4.2 K in magnetic fields up to 1.5 T. It has been found that the magnetic field state with zero conductivity appears in GaAs/AlAs Corbino disks irradiated by 130.70-GHz microwave radiation. This state was previously observed only in GaAs/AlGaAs Corbino disks with much higher electron mobility and lower density. It has been shown that the microwave photoconductivity measured in high magnetic fields on Corbino disks can significantly differ from the value calculated from the results of the measurements on Hall bars. This difference is explained by the fact that the conditions of the appearing magnetoplasmons that affect the magnitude and character of the microwave photoconductivity (photoresistance) in the Corbino disks are nonequivalent to those in the Hall bars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.