Abstract

The Synthetic Aperture Interferometric Radiometer Performance Simulator (SAIRPS) has been a three-year project sponsored by the European Space Agency (ESA) to develop a completely generic end-to-end performance simulator of arbitrary synthetic aperture interferometric radiometers. In a companion manuscript (Part I), the Radiative Transfer Module used to generate synthetic fully polarimetric brightness temperatures from 1 to 100 GHz, including land and ocean covers, as well as the atmosphere, is described in detail. In this manuscript (Part II), the instrument model, the calibration procedure, and the imaging algorithms are described. The instrument model includes the simulation of the array topology in terms of the number of antenna elements, the time-dependent position and orientation, and the arbitrary receivers’ topology which can be modified from a very generic one by connecting and disconnecting subsystems. All the parameters can be, one by one, defined either by mathematical functions or by input data files, including the frequency and temperature dependence. Generic calibration algorithms including an external point source, the flat target transformation, and the two-level correlated noise injection are described. Finally, different image reconstruction algorithms suitable for arbitrary array topologies have also been implemented and tested. Simulation results have been validated and selected results are presented.

Highlights

  • The Synthetic Aperture Interferometric Radiometer Performance Simulator (SAIRPS) has been a three-year project sponsored by the European Space Agency (ESA) to develop a completely generic end-to-end performance simulator of arbitrary synthetic aperture interferometric radiometers

  • The main purpose of the Synthetic Aperture Interferometric Radiometer Performance Simulator (SAIRPS) is to simulate and compute figures of merit for the performance of arbitrary Synthetic Aperture Interferometric Radiometers (SAIRs), with any receiver and array topologies, in order to assist in the definition of future instruments and missions

  • Calibration by Redundant Space Calibration (RSC). This calibration technique is based on the fact that the same baselines must measure the same value, and if not, this difference can be attributed to separable amplitude and phase errors, meaning errors that can be associated with each receiving chain [17]

Read more

Summary

Introduction

The main purpose of the Synthetic Aperture Interferometric Radiometer Performance Simulator (SAIRPS) is to simulate and compute figures of merit for the performance of arbitrary Synthetic Aperture Interferometric Radiometers (SAIRs), with any receiver and array topologies, in order to assist in the definition of future instruments and missions. FFiigguurree 11 pprreesseennttss tthhee oovveerraallll aarrcchhiitteeccttuurreeooffaaSSAAIIRRPPSS,,wwhhiicchhccoonnssiissttss oofffifivveemmoodduulleess:: tthhee ggeeoommeettrryymmodoudluel,et,hethReadRiaatdiviaetTivreanTsfrearnMsfoedr eMl aonddeBl riagnhdtneBsrsigThetmnpesesratTuermespMeraaptus rmesodMulaep(sdemscoridbuelde i(ndePsacrrtibI)e, danind PthaertInI)s,tarunmd ethnet,ICnastlirburmateionnt, aCnadlibImraatgioenRaencdonIsmtraugcetiRonecmonosdturulecst,iownhmichodaureletsh,ewohbijcehctaorfe tthhies ombajencutsocfritphti.s manuscript. TThheeIInnssttrruummeennttmmoodduulleeiissrreessppoonnssiibblleeffoorrtthheeffoorrwwaarrddmmooddeellssoofftthheeiinnssttrruummeenntt..TThhee iinnssttrruummeenntt ssuubbssyysstteemms are ssiimmuullaatteedd iinnththisismmoodduuleleanadndthtehieriirndinidvidvuidaul arlesrpeospnosensfeunfuctniocntisonarseacroemcopmutpedu.teAds. Adsesdcersibcreidbeidn iSnecSteicotniosn2s.12..21.a2nadnd2.12.31,.3vviritrutualallylyaannyyrreecceeiviveerraarrcchhiitteeccttuurree ccaann be simulated, iinncclluuddiinngg ssiinngglleeaanndddoduobulbelseidseid-bea-nbdan, hdo, mhomdyondeyonrehoetrerhoedtyernoed, ywnieth, dwigitihtaldcigoritraelactorsreolfataonrsarobfitraanryanrbuimtrbaeryr onfubmitbsearnodf bqiutsaanntidzaqtuioanntsitzeaptiso.nSsutebpsys.sSteumbsyasrtemchs aarraecctehrairzaecdtebriyzetdhebiry pthheyisripcahlytseicmapl teermatpuerera- taunredfarneqduefrnecqyu-ednecpye-nddeepnetnSd-epnatraSm-peatrearms tehteartsartehcaat sacaredecdastocaddeerdivetothdeeernivde-toth-endenfdre-tqou-endcyfrreesqpuoennscey. ODdifufleereanret ccaalliibbrraatteiodnwsittrhattehgeiepsa,rainmteertveraslscoamndpumteoddfersomcanthebeposweleerctmede.asTuhreemviesnibtsilaitnieds vpirsoibviilditeieds bmyetahseurIendstdruumrinengtcmaliobdruatlieoanr.eTchaelioburatpteudtswoifththtihs empoadrualme ewteilrlsbceotmhepucatelidbrfartoemd vthiseibpiloiwtieesr amnedapsuorweemremntesasaunrdemviesnibtsili(tei.egs.,minesatsruurmedendt uterminpgecraaltiubrreast)i.on. The outputs of this module will be the calibTrahtiesdmvoisdiublielitiiseasbalnedtopsoewleecrt mtheeatsyupreemofe:nts (e.g., instrument temperatures). ‚ internal calibration, including 1-0 unbalance correction for 1 bit/2 level correlator offsets, the Fringe Washing Function (FWF) at the origin, and eventually the shape correction, estimation/measurement of the system temperatures, offset errors correction, and receiver quadrature error correction using uncorrelated and two-level correlated noise injection. ‚ external calibration including the flat target response characterization, rredundant space calibration, phase/amplitude closures, and use of an external beacon

Image Reconstruction Software Module
Performance Analysis and Visualization Modules
Modeling of Instrument System and Subsystems
Correlator Model
Levels
Methodology to Include Instrument Errors Realistic Instrument Modeling
Modeling of Instrument Calibration
External Calibration
A Priori BT Compensation
Non-Uniform Fast Fourier Transform
G-Matrix Method
G Matrix Algorithm—Other Iterative Algorithms
Performance Analysis
Simulation Results and Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call