Abstract

Compressive sensing (CS)-based techniques can represent a very attractive approach to inverse scattering problems. In fact, if the unknown has a sparse representation and the measurements are properly organized, CS allows to considerably reduce the number of measurements and offers the possibility to achieve optimal (or nearly optimal) reconstruction performance. Unfortunately, the inverse scattering problem is nonlinear, while CS theory is well established only for linear recovery problems. As a contribution to overcome this issue, in this letter, we introduce two different CS-inspired approaches that exploit the “virtual experiments” framework, wherein it is possible to cast the inverse scattering problems in a linear form even in the case of nonweak targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.