Abstract

An interstitial microwave antenna array for hyperthermia cancer treatment is investigated. The purpose is to generate both uniform and controlled nonuniform temperature distributions in biological tissue by modulating the phases of the signals applied to each antenna. The array has four antennas positioned on the corners of a 2 cm square. The distributions of absorbed power within the arrays are computed and then converted into temperature distributions through a heat conduction simulation. The temperature patterns over phantom muscle are presented in both the lateral plane (perpendicular to the antennas) and the axial plane (parallel to the antennas). It is found that by proper phase modulation of radiofrequency signals applied to each antenna, a uniform heating can be produced in the entire array volume.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.