Abstract

Microwave-hydrothermal synthesis was employed to produce Na-birnessites. Crystalline, single-phase materials were obtained at temperatures as low as 120 °C and times as short as 1 min. X-ray diffraction and Raman spectroscopy were used to characterize the structural features of the nanostructured powders. Birnessites possessed a monoclinic structure in space group C2/ m with nine Raman-active bands, all of which were observed for the first time due to optimized acquisition of the spectroscopic data. The highly reactive materials produced were submitted to sorption experiments with As(III). An oxidative precipitation occurred with the production of Mn(II) arsenate at higher arsenic concentrations. In addition, the formation of hausmannite (Mn 3O 4) was confirmed by X-ray diffraction and Raman analyses of the reacted solid phase. The observed 14 Raman-active modes were adjusted according to the tetragonal I4 1/ amd space group for hausmannite. An additional band related to the breathing mode of the arsenate was observed, leading to the conclusion that adsorption onto hausmannite takes place in addition to the oxidative precipitation of manganese arsenate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.