Abstract

Octahedron-like NaEu(MoO4)2 microarchitectures with tetragonal scheelite-type structure have been successfully synthesized by a facile ethylene diamine tetraacetic acid (EDTA)-mediated microwave hydrothermal method. The as-prepared products were characterized by X-ray diffractometer, scanning electron microscope and photoluminescence. The particle size and morphology of NaEu(MoO4)2 can be tuned effectively by adjusting reaction temperature, reaction time, the amount of EDTA and ethylene glycol. Remarkably, the morphologies were the microflakes, micro-octahedrons, when the amount of EDTA was increased from 0 to 0.01 g at 180 °C. The excitation spectrum of the calcined NaEu(MoO4)2 micro-octahedron was observed with a maximum peak at near ultraviolet excitation (λex = 393 nm). Its emission spectrum was recorded under a excitation wavelength of 393 nm and exhibited the most intensitive red emission at 615 nm. This indicates the photoluminescence properties were strongly dependent on crystal morphology and crystallinity. So the calcined NaEu(MoO4)2 micro-octahedron has the potential to be applied in many LED devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.