Abstract

The microwave phenomena that occur in magnetic multilayer (CoFe)/Cu nanostructures, which have a giant magnetoresistance, are studied. The transmission of waves through a nanostructure is used to investigate the microwave giant magnetoresistance effect. The changes in the transmission coefficient at frequencies of 29–38 GHz are found to exceed the relative magnetoresistance, which distinguishes the system under study from the nanostructures studied earlier. Ferromagnetic and spin-wave resonances are used to study the angular dependences of the microwave absorption spectra of a multilayer (CoFe/Cu)n nanostructure. The following parameters are determined: the critical angle that determines the boundaries of the ranges of excitation of uniform and nonuniform spin modes, the type of boundary conditions describing the pinning of spins on the outer nanostructure surfaces, and the surface anisotropy and exchange interaction constants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call