Abstract
In ultra-precision machining (UPM), surface microwaves have been commonly produced on the machined surface along with lamellar chips. However, the intrinsic characteristics of surface microwave formation in UPM have not been understood well. Therefore, a theoretical and experimental investigation has been conducted into microwave formation mechanisms of surface generation in UPM. The results revealed that in UPM, the lamellar chip formation caused cyclic cutting forces to induce material recovery and tool vibration, namely chip formation induced material recovery and tool vibration. Accordingly, it caused surface microwaves on the machined surface. Further, a theoretical model has been developed qualitatively to represent the relationship between chip formation induced material recovery and tool vibration and surface microwaves. It was well identified by the machined and simulated surface topographies in UPM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.