Abstract
Potential health effects of radiofrequency (RF) radiation from mobile phones arouse widespread public concern. RF fields from handheld devices near the brain might trigger or aggravate brain tumors or neurodegenerative diseases such as Parkinson's disease (PD). Aggregation of neural α-synuclein (S) is central to PD pathophysiology, and invertebrate models expressing human S have helped elucidate factors affecting the aggregation process. We have recently developed a transgenic strain of Caenorhabditis elegans carrying two S constructs: SC tagged with cyan (C) blue fluorescent protein (CFP), and SV with the Venus (V) variant of yellow fluorescent protein (YFP). During S aggregation in these SC+SV worms, CFP, and YFP tags are brought close enough to allow Foerster Resonance Energy Transfer (FRET). As a positive control, S aggregation was promoted at low Hg(2+) concentrations, whereas higher concentrations activated stress-response genes. Using two different exposure systems described previously, we tested whether RF fields (1.0 GHz CW, 0.002-0.02 W kg(-1); 1.8 GHz CW or GSM, 1.8 W kg(-1)) could influence S aggregation in SC+SV worms. YFP fluorescence in similar SV-only worms provided internal controls, which should show opposite changes due to FRET quenching during S aggregation. No statistically significant changes were observed over several independent runs at 2.5, 24, or 96 h. Although our worm model is sensitive to chemical promoters of aggregation, no similar effects were attributable to RF exposures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.