Abstract
Ferrimagnets having low RF loss are used in passive microwave components such as isolators, circulators, phase shifters, and miniature antennas operating in a wide range of frequencies (1–100 GHz) and as magnetic recording media owing to their novel physical properties. Frequency tuning of these components has so far been obtained by external magnetic fields provided by a permanent magnet or by passing current through coils. However, for high frequency operation the permanent part of magnetic bias should be as high as possible, which requires large permanent magnets resulting in relatively large size and high cost microwave passive components. A promising approach to circumvent this problem is to use hexaferrites, such as BaFe12O19 and SrFe12O19, which have high effective internal magnetic anisotropy that also contributes to the permanent bias. Such a self-biased material remains magnetized even after removing the external applied magnetic field, and thus, may not even require an external permanent magnet. In garnet and spinel ferrites, such as Y3Fe5O12 (YIG) and MgFe2O4, however, the uniaxial anisotropy is much smaller, and one would need to apply huge magnetic fields to achieve such high frequencies. In Part 1 of this review of microwave ferrites a brief discussion of fundamentals of magnetism, particularly ferrimagnetism, and chemical, structural, and magnetic properties of ferrites of interest as they pertain to net magnetization, especially to self biasing, are presented. Operational principles of microwave passive components and electrical tuning of magnetization using magnetoelectric coupling are discussed in Part 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.