Abstract
Numerous observations have been reported in the literature of enhanced mass transport and solid-state reaction rates during microwave heating or processing of a variety of ceramic, glass, and polymer materials. These empirical observations of microwave enhancements have been broadly called the “microwave effect”. In the past, these claims have been the source of significant controversy, due in part to the lack of a credible and verifiable theoretical explanation. Moreover, certain notable microwave heating experiments have failed to observe any resolvable reaction or transport rate enhancements. This paper describes a series of recent experimental and numerical investigations that have established the fact that strong microwave electric fields induce a (previously unknown) nonlinear driving force for (ionic) mass transport near surfaces and structural interfaces (e.g., grain boundaries) in ceramic materials. This driving force can influence reaction kinetics by enhancing mass transport rates in heterogeneous solid-state reactions. Most of the previously reported observations regarding “microwave effects” (both for and against) are consistent with the characteristics of this newly identified microwave-induced driving force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.