Abstract

The effects of leaf characteristics on the microwave emission of land surfaces are analyzed. In order to simulate these effects, a radiative transfer model is presented. The medium consists of a vegetated layer containing randomly oriented leaves, modeled as elliptic-shaped scatterers, over the ground surface. Radiative transfer equations are solved with a discrete-ordinate-eigenanalysis method. The calculation of the phase matrix of the elliptic scatterers is based on the generalized Rayleigh-Gans approximation, which increases the frequency range of the modeling. The sensitivity of brightness temperature and polarization ratio to leaf characteristics, volume fraction, gravimetric moisture, size, shape, and inclination distribution is investigated at C-, and X-band. The behavior of the simulated emission of a soybean canopy versus frequency and incidence angle is studied for different soil moisture levels. Up to 10 GHz the microwave emission appears to contain significant information on underlying soil moisture.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.