Abstract
Using sorbent materials to separate and concentrate ambient humidity is a promising option for atmospheric water harvesting in the face of impending worldwide freshwater scarcity. The method of cycled sorption and forced release can facilitate efficient condensation, but performance strongly depends on device-scale issues of heat and mass transfer. We examine the potential of using microwave radiation to liberate sorbed vapor, in proof-of-concept experiments with hygroscopic salt-infused paper towel as simple sorbents. We quantify performance as a function of tunable system parameters and ambient humidity. Our results demonstrate promising aspects: both rapid desorption and regeneration, owing to water-tuned dielectric heating and directing flow through fibrous sorbent, respectively; substantial efficiency of moisture separation toward very low (∼25%) relative humidity; and robust repeatability over many cycles, due to the targeted energy input and retention of hygroscopic salt within the paper scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.