Abstract

Bimetallic synergies have been commonly used to boost the intrinsic activity of metal–organic frameworks (MOFs), specifically accelerating the charge transfer in supercapacitor and improving the catalytic activity in electrocatalysis. Presently, most bimetallic synergistic MOFs are prepared by solvothermal method. However, the solvothermal process has several disadvantages such as time-consuming synthesis, acid and alkali corrosion, poor universality and controllability. Here, we present a novel vapor-phase microwave pulse discharge strategy for the rapid (20 s) introduction of bimetallic-synergistic configuration into MOFs. A high-performance and stable bimetallic Zn,Ni-catecholate (Zn,Ni-CAT) can be rapidly and controllably obtained by sputtering high-energy zinc particles onto conductive Ni-CAT utilizing microwave pulse-induced plasma and arc. Based on the high tunability of the microwave pulse discharge to the bimetallic lattice size, the Zn,Ni-CAT can exhibit extremely high area specific capacitance (422.54 mF cm−2), as well as robust long cycle stability (91.53 % retention of the original capacitance after 30,000 cycles). This rapid, acid/base-free and generic strategy is anticipated to provide a new route for atomic engineering of high-performance conductive functional materials for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.