Abstract

Carbon black (CB) (Donnet et al., 1993) and carbon fiber (CF) (Burchell, 1999) have been used as fillers in radio wave and microwave composites for more than half century. Typical applications include electromagnetic compatibility (EMC) or electromagnetic interference (EMI), microwave absorbing coatings, and anti-electrostatic materials, etc due to their good electric/dielectric properties, stability and chemical resistance as compared to composites with metal powders of nano or micron meter in size. CB composites normally have frequency-dependent permittivity which is useful in the design of broadband absorbing or functional materials at microwave band. The frequency dispersion in CB composites is mainly caused by the effect of large agglomerate of CB spherical particles with diameter below 100 nanometers and usually appears in composites with large concentration of fillers. CF composites can have special microwave properties, such as high permittivity at relatively low concentrations of fibers (Lagarkov et al, 1998). The dispersive property of CF composites at microwave band is determined by the frequency-dependent response of individual fibers or fiber clusters (Liu, et al, 2007a). The dispersion can be observed even at very low concentration of fibers, for example, less than one percent in volume. This feature makes CF composites advantageous for many technical applications, such as lightweight absorbing materials (Neo & Varadan, 2004) and phantom materials for modeling the electromagnetic response of biological issue (Youngs, et al, 2002). However, to obtain strong dielectric dispersion at microwave frequencies, CF must contain fibers which are at least millimeters in length to achieve large aspect ratio considering the diameter of commercial CF which is normally close to 10 microns. The large dimension of the fibrous inclusions restricts the practical application of CF composites. Also, the favorite processing methods, such as spray technique, are not applicable for CF composites. The planar CF composites are anisotropic with degraded dielectric response across the plane. Due to the heterogeneity of the composites, a surface layer of millimeters in thickness appears with properties different

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call