Abstract

AbstractWe report the effect of oxygen mixing percentage (OMP) on structural, microstructural, dielectric, linear, and nonlinear optical properties of Dy2O3‐doped (K0.5Na0.5)NbO3 thin films. The (K0.5Na0.5)NbO3 + 0.5 wt%Dy2O3 (KNN05D) ferroelectric thin films were deposited on to quartz and Pt/Ti/SiO2/Si substrates by RF magnetron sputtering. An increase in the refractive index from 2.08 to 2.21 and a decrease in the optical bandgap from 4.30 to 4.28 eV indicate the improvement in crystallinity, which is also confirmed from Raman studies. A high relative permittivity (εr=281‐332) and low loss tangent (tanδ=1.2%‐1.9%) were obtained for the films deposited in 100% OMP, measured at microwave frequencies (5‐15 GHz). The leakage current of the films found to be as low as 9.90×10−9 A/cm2 at 150 kV/cm and Poole‐Frenkel emission is the dominant conduction mechanism in the films. The third order nonlinear optical properties of the KNN05D films were investigated using modified single beam z‐scan method. The third order nonlinear susceptibility (ǀχ(3)ǀ) values of KNN05D films increased from 0.69×10−3 esu to 1.40×10−3 esu with an increase in OMP. The larger and positive nonlinear refractive index n2=7.04×10−6 cm2/W, and nonlinear absorption coefficient β=1.70 cm/W were obtained for the 100% OMP film, indicating that KNN05D films are good candidates for the applications in nonlinear photonics and high‐frequency devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.