Abstract

It is shown that a polarized microwave radiation creates directed transport in an asymmetric antidot superlattice in a two dimensional electron gas. A numerical method is developed that allows to establish the dependence of this ratchet effect on several parameters relevant for real experimental studies. It is applied to the concrete case of a semidisk Galton board where the electron dynamics is chaotic in the absence of microwave driving. The obtained results show that high currents can be reached at a relatively low microwave power. This effect opens new possibilities for microwave control of transport in asymmetric superlattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.