Abstract

We propose a novel on-chip platform for controlling and manipulating cold atoms precisely and coherently. The scheme is achieved by producing optically induced fictitious magnetic traps (OFMTs) with 790 nm (for 87Rb) circularly polarized laser beams and state-dependent potentials simultaneously for two internal atomic states with microwave coplanar waveguides. We carry out numerical calculations and simulations for controlled collisional interactions between OFMTs and addressable single atoms’ manipulation on our designed hybrid atom chips. The results show that our proposed platform is feasible and flexible, which has wide applications including collisional dynamics investigation, entanglement generation, and scalable quantum gates implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call