Abstract

To assess the coagulation capability of a perfusion microwave electrode (PME) as a key component of microwave coagulation therapy, a preliminary experimental study was performed using ex vivo and in vivo livers. For a microwave electrode, a PME was employed. Using a PME, saline was passed through the electrode and injected continuously into the target tissue. Using an ex vivo bovine liver, the range of tissue coagulation was measured for various volumes of infused saline and microwave outputs. Using an in vivo porcine liver, the efficiency of coagulation by a PME was compared with that of radiofrequency ablation (RFA) using a cool-tip needle. In an ex vivo bovine liver, the range of tissue coagulation increased as the flow rate of saline increased. In the in vivo porcine liver, the range of coagulation was similar to that found in the ex vivo bovine liver. With a PME under conditions of a microwave output of 80 W, a flow rate of 3 ml/min and irradiation time of 5 min, the range of coagulation was 44.8±2.8 mm [maximum vertical diameter: (a)] x 31.2±2.4 mm [maximum transverse diameter: (b)]. The range of RFA (cool-tip needle) at 12 min was 46.0±2.0 mm (a) x 30.2±2.0 mm (b). With only 5 min of microwave irradiation, the use of a PME enabled induction of the same range of coagulation that was obtainable by RFA for 12 min. In comparison with microwave coagulation without saline infusion, the use of a PME made it possible to extend the range of tissue coagulation to a range equal to that of RFA in a short time. Microwave coagulation using a PME may be one of the suitable tissue coagulation systems for local ablation treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.