Abstract

We investigate wave properties in coupled transmission lines (CTLs) under a special condition known as the exceptional point of degeneracy (EPD) at which two or more of the supported eigenmodes of the system coalesce. At an EPD, not only the eigenvalues (resonances or wavenumbers) of the system (a resonator or a waveguide) coalesce but also the eigenvectors (polarization states) coalesce, and the number of coalescing eigenmodes defines the order of the degeneracy. We investigate different structures, either periodic or uniform CTLs, that are capable of exhibiting EPDs in their dispersion diagram. Secondly, we show an experimental verification of the existence of EPDs through measuring the dispersion of microstrip-based CTLs in the microwave spectrum. For antenna array configurations, we discuss the effect of CTLs radiative and dissipative losses on EPDs and how introducing gain to the CTLs compensate for such losses restoring the EPD in a fully radiating array, in what we define as the gain and distributed-radiation balance regime. Therefore, we show how to obtain large linear and planar arrays that efficiently generate microwave oscillations, and by spatial combination they are able to generate collimated beams with large radiation intensity. Finally, we show other promising applications based on the concept of EPDs in ultra-sensitive sensors or reconfigurable antennas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call