Abstract

A microwave antenna system for transcatheter ablation of cardiac tissue is investigated. A numerical model based on the finite-difference time-domain method incorporating a Gaussian pulse excitation has been constructed and frequency domain electric and magnetic fields are obtained through Fourier transformation. Results are presented for a coaxial line fed monopole catheter which is modified by the successive inclusion of a Teflon sheath outer coating, a terminating disk at the tip of the antenna, a sleeve choke, and a high dielectric constant cylinder surrounding the monopole antenna. The effects of these design features are characterized in terms of specific absorption rate (SAR) and return loss (RL). Numerical calculations are confirmed by comparing with the RL measurement of a Teflon-coated monopole containing a disk and choke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.