Abstract

It is promising to convert waste oil and plastics to renewable fuels and chemicals by microwave catalytic co-pyrolysis, enabling pollution reduction and resource recovery. The purpose of this study was to evaluate the effect of catalysts on the product selectivity of microwave-assisted co-pyrolysis of waste cooking oil and low-density polyethylene and optimize the pyrolysis process, including pyrolysis temperature, catalytic temperature, waste cooking oil to low-density polyethylene ratio, and catalyst to feedstocks ratio. The results indicated that catalysts had a great influence on the product distribution, and the yield of BTX (benzene, toluene, and xylenes), which increased in the following order: SAPO-34 < Hβ < HY < HZSM-5. HZSM-5 was more active for the formation of light aromatic hydrocarbons as compared to others, where the concentrations of toluene, benzene and xylenes reached 252.59 mg/mL, 114.7 mg/mL and 132.91 mg/mL, respectively. The optimum pyrolysis temperature, catalytic temperature, waste cooking oil to low-density polyethylene ratio and catalyst to feedstocks ratio could be 550 °C, 450 °C, 1:1 and 1:2, respectively, to maximize the formation of BTX and inhibit the formation of polycyclic aromatic hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.