Abstract

In this research, the cementing filler material production by microwave carbonation of flue gas of coal combusting thermal power station of Silopi in ??rnak by fly ash/coal char, ??rnak asphaltite char, in molten alkali salts will be investigated. The optimum carbonation was managed in order to provide an overview of stabilization of foundation grounds. In this study, the effect of microwave energy managed the carbonation by salt slurries with flue gas contents in the reactor. By the slurry character of salts in the furnace during that process, the flue gas of ??rnak thermal power plant, salt type and flue content were investigated for carbonation with weight and slurry performances. In this study, the toxic emitted contents were also determined in salt slurry, regarding the amounts and type of salt contents as sorbent agents. As a result, a significant positive effect of microwave energy on the carbonation products was determined at lower gas flow rate and steam rates. Finally, 23% CO2 carbonation could be provided. The oil content in flue gas decreased carbonation fractions. The salt slurry content was primarily settled and coal humus char as by-product was also recovered as solid with a 38.7% recovery rate in microwave carbonation in slurry salt with 20% solid/water rate. The strengths of the ground blocks were dispersed to 0.8-1.2 MPa in shear strength and 3.7-9.4 MPa in compression strength. Thus, with the ideal packing, the strength of the mixed cemented blocks produced from these fine fillers and waste mixtures can also reach 11.2 MPa in compression strength and 3.9 MPa in shear strength.

Highlights

  • CO2 and HC containing flue gas emissions of thermal power stations pollute the environment and urbanized area, HC emissions of transportation threat hardly and carbonation of flue gas emissions need filtration and carbonization by pressurized water dissolution and reacting by natural alkali lime and magnesia or other alkali sources becomes an industrial advantageous in sequestration

  • We succeeded in achieving shortened carbonation reaction times employing fly ash/coal char containing lime and calcium magnesium silicates such as gehlenite and mehlenite

  • This study reveals suitable large-scale operating units in order to achieve the carbonation method as a viable carbonation tool at industrially relevant scales by using fly ash/coal char

Read more

Summary

Introduction

CO2 and HC containing flue gas emissions of thermal power stations pollute the environment and urbanized area, HC emissions of transportation threat hardly and carbonation of flue gas emissions need filtration and carbonization by pressurized water dissolution and reacting by natural alkali lime and magnesia or other alkali sources becomes an industrial advantageous in sequestration. This paper discussed progress on reactor achieved by tests and search for fast reaction methods using exhaust gas containing sulfur and carbon gases at power stations [1–5]. The alkaline sources containing alkali sodium and magnesium salts, under 10–20 bar pressurized CO2, salt slurry, and additives were searched for microwave carbonation method to enhance mineral reactivity and to analyze the structural changes to identify reaction kinetics and potential impurity and fouling barriers

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.