Abstract

The highly ordered microspheres containing ultrafine SnO2 nanoparticles and mesoporous carbon is fabricated using microwave-assisted hydrothermal method for high-rate and durable Li-ion battery application. The uniformly carbon nanosphere with an average diameter of around 90 nm exhibits large specific surface area and good mechanical stability to minimize the volume expansion of SnO2 during intercalation-deintercalation. The homogeneous coverage with 3–6 nm SnO2 nanoparticle provides sufficient active sites to facilitate the rapid lithiation-delithiation process through the fast ion transfer rates. Remarkably, SnO2/OMCS at Sn/C ratio of 35% exhibits an excellent initial capacity of 1770 mAh g−1 at a current density of 35 mA g−1 and can maintain at a stable capacity of 400 mAh g−1 under an ultra-high current density of 3500 mA g−1 after 400 cycles. The intimate contact of SnO2 with ordered mesoporous carbon sphere shortens the electrons transport paths, resulting in the enhancement of stable lithium storage capacity at a high current density. Results obtained in this study clearly demonstrate that SnO2/OMCS nanocomposite is a promising material for lithium-ion battery and can provide an alternative to fabricate novel mesoporous carbon sphere-based nanocomposites for long cycle life and high-rate energy storage application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.