Abstract

: This study outlines the development of a novel approach utilizing microwave assistance for the alcohol dehydrogenative reaction. The process is catalyzed by manganese (II) and cobalt (II) in conjunction with chroman-4-one amino ligands. This research introduces a unique catalytic system capable of synthesizing various heterocyclic compounds, including pyrroles, pyridines, Betti bases, chromenes, and coumarins via alcohol dehydrogenation. The synthesis involved the preparation and characterization of a series of chroman- 4-one amino ligands (C1-C6) using standard analytical techniques. These ligands, in combination with MnCl2‧4H2O and CoCl2, demonstrated remarkable catalytic activity, effectively driving alcohol dehydrogenation. The catalytic cycle was initiated by the in-situ formation of metal complexes with the ligands during the reaction. Characterization using ESI-MS confirmed the presence of metal complexes (Int-1) and other intermediates (Int-II and Int-III) throughout the catalytic cycle. Additionally, the controlled experiment corroborated the efficacy of the catalytic system, evidenced by the evolution of H2 gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.